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Abstract  

The study investigates a convective heat and mass transfer of pressure-driven hydromagnetic 

flow past a fixed permeable surface in the presence of an inclined uniform magnetic field. The 

Newtonian fluid is influenced by pressure as well as thermal and mass convection in an 

isothermal system. The governing partial derivative formulated equations are reduced to a 

system of coupled quasilinear ordinary derivative equations using a scaling Lie group of 

transformations. Besides,the dimensionless derivative equations are solved analytically using the 

weighted residual method and the results are validated by comparing it with the shooting 

technique coupled with the Runge-Kutta scheme of fourth-order. The results obtained are 

presented graphically to characterise the effect of different relevant parameters on the 

dimensionless flow rate, temperature, mass species, and pressure drop. Inaddition, the effects of 

Skin friction, Nusselt, and Sherwood numbers are also considered and discussed. The study 

revealed that the pressure fields are significantly influenced by the fluid thermo-physical 

parameters. The mass transfer considerably changes as the heat distribution is enhanced. Also, 

increasing the angle of inclination of the magnetic field is observed to strongly influence the 

flow rate and pressure field. 

 

Keywords: Hydromagnetic; Pressure-driven flow; Porous sheet; Lie group; Weighted residual 

methods.  

 

1  Introduction 

Magnetohydrodynamics (MHD) deals with the collective effects of electromagnetic forces and 

conducting fluid mechanical. It is the study of the magnetic properties and the behaviour of 

electrically conducting fluids such as liquid metals, plasmas, and electrolytes or saltwater [1]. 

The fundamental concept of magnetohydrodynamics is that magnetic field stimulates currents in 

a flowing conductive fluid,which in turn polarizes the fluid and jointly changes the magnetic 

field on the fluid. A pressure-driven flow of heat and mass transfer in MHD flow past a 

stretching permeable surface is being studied widely due to its importance in MHD power 

generators, reducing drag, MHD pumps, petroleum reservoirs, nuclear waste disposal, chemical 

catalytic reactor, Aeronautical engineering fields, and others [2,3]. As a result, its applications, 

Youssef et al. [4] reported on two-dimensional viscous fluid flow past slowly expanding or 

contracting walls with weak permeability by using the Lie-group method. They neglected the 

magnetic terms and pressure gradient in their analysis while Mohammad et al. [5] examined the 

Viscous flow through expanding or contracting gaps by permeable walls using the Optimal 
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Homotopy Asymptotic method. Magnetic terms were neglected but considered the effect of 

Reynolds number on the pressure distribution. An analytical analysis was carried out on the 

steady Magnetohydrodynamic Poiseuille flow through two infinite parallel porous plates in an 

inclined magnetic field with a constant pressure gradient by Manyonge et al. [6]. It was found 

that the velocity decreases in the presence of suction/injection rates, inclined magnetic field, 

Hartmann number, and pressure gradient. Moreso, the study of boundary layer flow of a 

non-Newtonian power-law fluid flow in a convergent conduit was investigated by Pramanik [7]. 

Magnetic terms and pressure gradient was ignored while the partial differential equations 

governing the problem was reduced to nonlinear differential equations using a scaling group of 

transformations. The cited authors above did not consider the effects of heat and mass transfer on 

fluid flow. 

The problem of free convection under the influence of a magnetic field has attracted the mind of 

many scholars due to its applications in astrophysics and geophysics. As such, [8,9] carried out 

an analysis on MHD boundary layer flow with heat and mass transport over a moving vertical 

plate in the occurrence of a magnetic field with convective heat exchange at the surface as well 

as the surrounding while Uwanta and Sarki [10] studied heat and mass transfer by variable 

temperature as well as exponential mass diffusion but both authors neglected the effect of the 

pressure gradient in their study. Alireza et al. [11] reported on the problem of steady 

two-dimensional MHD stagnation point flow near a permeable stretching sheet and chemical 

reaction. The problem was solved analytically using the Optimal Homotopy Asymptotic method 

and the results compared with the fourth-order Runge-Kutta method. The study carried out in 

[12,13] investigated heat and mass transfer of an MHD free convection flow through a stretching 

sheet, chemical reaction, radiation, and heat generation in the presence of a transfer magnetic 

field. The problem under consideration was transformed using a similarity solution and solved by 

applying Nachtsheim Swigert shooting technique along with a sixth-order Runge-Kutta 

integration scheme. Scaling transformation for heat and mass transfer on steady MHD free 

convection dissipative flow past an inclined porous surface was examined by Reddy [14]. The 

results show that the velocity increases as thermal Grashof numbers but decreases with an 

increase in Prandtl and Schmidt numbers. Fatunmbi and Fenuga [15] examined MHD micropolar 

fluid flow over a permeable stretching sheet in the presence of variable viscosity and thermal 

conductivity with Soret and Dufour Effects, while Adeniyan and Adigun [16] reported on 

stress-work and chemical reaction effects on MHD forced convection heat and mass transfer 

slip-flow towards a convectively heated plate in a non-Darcian porous medium with surface 

mass-flux. However, the pressure, heat source, and reaction rate terms were not taken into 

account in the study. 

The pressure-driven flow of magnetohydrodynamics heat and mass transfer problems are 

important in many engineering processes and has received considerable attention from many 

researchers in recent years. In processes such as fluid droplet sprays, purification of crude oil, 

flow in a desert cooler, energy transfer in a wet cooling tower, and possible applications in many 

industries, Salawu et al. [17]. For example, the water industry, petroleum industry, drilling 

industry, sewage treatment industry, and many more. Time-dependent pressure gradient 

influence on unsteady MHD Couette flow and heat transfer of a Casson fluid was analyzed by 

Sayed-Ahmed et al. [18]. The fluid was influenced by a regular and exponential decaying 

pressure gradient, an external uniform magnetic field is applied perpendicular to the plates with 

the fluid motion subjected to a uniform injection and suction, while Farooq et al. [19] examined 

steady Poiseuille flow and heat transfer of couple stress fluids between two parallel inclined 
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plates with variable viscosity. Reynold’s model for temperature-dependent viscosity was used. 

Thiagarajan and Sangeetha [20] reported on nonlinear MHD boundary layer fluid flow with heat 

transfer through a stretching plate and free stream pressure gradient in the existence of variable 

viscosity and thermal conductivity. 

The above studies cited, neglected the influence of the inclined magnetic field and the effects of 

some fluid parameters on the fluid pressure. The present study investigates the combined effects 

of an inclined magnetic field and pressure drop in a steady convective heat and mass transfer of 

magnetohydrodynamic flow. The flow is pressure-driven past a fixed permeable surface with the 

inclined uniform magnetic field. To achieve the aims of this study, Lie group transformation was 

applied to reduce the system of partial differential equations to a system of ordinary differential 

equations by reducing the number of independent variables. The weighted residual method was 

used to obtain the solution of the non-linear differential equations governing the fluid flow 

problem. 

 

2  Formulation of the problem 

An investigation was carried out to examine free convective heat and mass transfer of 

two-dimensional MHD pressure-driven flow of an electrically conducting, steady, viscous, 

laminar, and incompressible fluid flow past a permeable plate under the influence of uniform 

inclined magnetic field and pressure gradient. The motion of the fluid is maintained by both 

pressure gradient and gravity, and the flow is assumed to be in the 𝑋-direction with 𝑌-axis 

normal to it. The magnetic field of uniform strength 𝐵0 is introduced at angle 𝛼 lying in the 

range 0 ≺ 𝛼 ≺
𝜋

2
 in the direction of the flow. The plate is maintained at the temperature and 

species concentration 𝑇𝑤 , 𝐶𝑤  and free stream temperature and species concentration 𝑇∞, 𝐶∞ 

respectively. The geometry and equations governing the steady heat and mass transfer of 

two-dimensional magnetohydrodynamic Poiseuille fluid flow past a permeable plate with an 

inclined magnetic field are as follows:  

 

 
Figure 1: The flow coordinate 
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𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉
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1
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𝜕𝑌2) −
1

𝜌
𝜎𝐵0

2𝑉𝑠𝑖𝑛2𝛼 (3) 

  

𝜌𝐶𝑝 (𝑈
𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
) = 𝑘 (

𝜕2𝑇

𝜕𝑋2 +
𝜕2𝑇

𝜕𝑌2) + 𝑄0(𝑇 − 𝑇∞) (4) 

  

𝑈
𝜕𝐶

𝜕𝑋
+ 𝑉

𝜕𝐶

𝜕𝑌
= 𝐷 (

𝜕2𝐶

𝜕𝑋2 +
𝜕2𝐶

𝜕𝑌2) − 𝛾(𝐶 − 𝐶∞)  (5) 

 The initial and boundary conditions are as follows:  

 

𝑈 = 0, 𝑉 = 𝑣𝑤, 𝑃 = 0, 𝑇 = 𝑇∞ + (𝑇𝑤 − 𝑇∞)𝐴𝑋, 𝐶 = 𝐶∞ + (𝐶𝑤 − 𝐶∞)𝐵𝑋   𝑎𝑡   𝑌 = 0

𝑈 = 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞   𝑎𝑠   𝑌 → ∞
(6) 

 Using the following non-dimensional quantities  

𝑥 =
𝑋

𝑙
, 𝑦 =

𝑌

𝑙
, 𝑢 =

𝑈𝑙

𝜈
, 𝑣 =

𝑉𝑙

𝜈
, 𝑝 =

𝑃𝑙2

𝜌𝜈2 , 𝐻𝑎 = 𝑙𝐵0√
𝜎

𝜇
, 𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝑃𝑟 =

𝜇𝐶𝑝

𝑘
,

𝑆𝑐 =
𝜈

𝐷
, 𝐺𝑟 =

𝑙3𝑔𝛽𝑇(𝑇𝑤−𝑇∞)

𝜈2 , 𝐺𝑐 =
𝑙3𝑔𝛽𝐶(𝐶𝑤−𝐶∞)

𝜈2 , 𝜙 =
𝐶−𝐶∞

𝐶𝑤−𝐶∞
, 𝜆 =

𝑙2𝛾

𝜈
,

𝑄 =
𝑙2𝑄0

𝜇𝐶𝑝
, 𝑓𝑤 = −

𝑣𝑤𝑙

𝜈

 (7) 

 Substituting (7) into equation (1)-(6), to obtain  

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0  (8) 

  

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −𝐻𝑎

2𝑢𝑠𝑖𝑛2𝛼 −
𝜕𝑝

𝜕𝑥
+ (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) + 𝐺𝑟𝜃 + 𝐺𝑐𝜙 (9) 

  
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) − 𝐻𝑎
2𝑣𝑠𝑖𝑛2𝛼  (10) 

  

𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟
(

𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2) + 𝑄𝜃  (11) 

  

𝑢
𝜕𝜙

𝜕𝑥
+ 𝑣

𝜕𝜙

𝜕𝑦
=

1

𝑆𝑐
(

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2) − 𝜆𝜙  (12) 

 The corresponding initial and boundary conditions become:  

𝑢 = 0, 𝑣 = −𝑓𝑤, 𝑝 = 0, 𝜃 = 𝑥, 𝜙 = 𝑥   𝑎𝑡   𝑦 = 0

𝑢 = 0, 𝜃 = 0, 𝜙 = 0   𝑎𝑠   𝑦 → ∞
 (13) 

 Introducing the stream function 𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
, the continuity equation is satisfied and 

equations (9)-(13), gives  

 
𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2 = −𝐻𝑎
2𝑠𝑖𝑛2𝛼 (

𝜕𝜓

𝜕𝑦
) −

𝜕𝑝

𝜕𝑥
+ (

𝜕3𝜓

𝜕𝑥2𝜕𝑦
+

𝜕3𝜓

𝜕𝑦3) + 𝐺𝑟𝜃 + 𝐺𝑐𝜙 (14) 

  

−
𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥2 +
𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑥𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
− (

𝜕3𝜓

𝜕𝑥3 +
𝜕3𝜓

𝜕𝑥𝜕𝑦2) + 𝐻𝑎
2𝑠𝑖𝑛2𝛼 (

𝜕𝜓

𝜕𝑥
) (15) 

  
𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑥
−
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𝜕𝑥
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𝜕𝜓

𝜕𝑦

𝜕𝜙

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝜙

𝜕𝑦
=

1

𝑆𝑐
(

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2) − 𝜆𝜙  (17) 

 

subject to the initial and boundary conditions  
𝜕𝜓

𝜕𝑦
= 0,

𝜕𝜓

𝜕𝑥
= 𝑓𝑤, 𝑝 = 0, 𝜃 = 𝑥, 𝜙 = 𝑥   𝑎𝑡   𝑦 = 0

𝜕𝜓

𝜕𝑦
= 0, 𝜃 = 0, 𝜙 = 0   𝑎𝑠   𝑦 → ∞

 (18) 

Introducing a simplified form of Lie-group transformations namely, the scaling group of 

transformations to equations (14)-(18) is equivalent to determining the invariant solutions of 

these equations under a continuous one-parameter group [21-23]. One of the methods is to search 

for a transformation group from an elementary set of one-parameter scaling group of 

transformations, given as ∇  

 

∇: 𝑥∗ = 𝑥𝑒𝜖𝛼1 , 𝑦∗ = 𝑦𝑒𝜖𝛼2 , 𝜓∗ = 𝜓𝑒𝜖𝛼3 , 𝑢∗ = 𝑢𝑒𝜖𝛼4 , 𝑣∗ = 𝑣𝑒𝜖𝛼5 ,

𝑝∗ = 𝑝𝑒𝜖𝛼6 , 𝜃∗ = 𝜃𝑒𝜖𝛼7 , 𝜙∗ = 𝜙𝑒𝜖𝛼8
 (19) 

 

where 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼7, and 𝛼8, are transformation parameters of the group to be 

determined later and 𝜖  is a small parameter. Equation (19) may be considered as a 

point-transformation which transforms coordinate (𝑥, 𝑦, 𝜓, 𝑢, 𝑣, 𝜃, 𝜙)  to the coordinate 

(𝑥∗, 𝑦∗, 𝜓∗, 𝑢∗, 𝑣∗, 𝜃∗, 𝜙∗). 

The task is to find relationships among the exponents 𝛼′𝑠 such that Equations (14)-(18) will 

remain invariant under the point transformations. Substituting transformation (19) into Equations 

(14)-(18) and applying invariant conditions yields  

𝛼1 = 𝛼3 = 𝛼4 = 𝛼7 = 𝛼8, 𝛼3 =
1

2
𝛼1, 𝛼2 = 𝛼5 = 𝛼6 = 0 (20) 

 Thus the set of transformations ∇ reduces to a one-parameter group of transformations as  

𝑥∗ = 𝑥𝑒𝜖𝛼1 , 𝑦∗ = 𝑦, 𝜓∗ = 𝜓𝑒𝜖𝛼1 , 𝑢∗ = 𝑢𝑒𝜖𝛼1 , 𝑣∗ = 𝑣, 𝑝∗ = 𝑝, 𝜃∗ = 𝜃𝑒𝜖𝛼1 , 𝜙∗ = 𝜙𝑒𝜖𝛼1 (21) 

 Finding the absolute invariant, the similarity transformations is obtained as:  

𝜂 = 𝑦, 𝜓 = 𝑥𝑓(𝜂), 𝑝 = 𝑝𝑑(𝜂), 𝜃 = 𝑥𝜃(𝜂), 𝜙 = 𝑥𝜙(𝜂) (22) 

 Substituting the similarity variables (22) into equations (14)-(18). the following system of 

non-linear differential equations is obtained.  

 

𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 − 𝑀2𝑓′ + 𝐺𝑟𝜃 + 𝐺𝑐𝜙 = 0  (23) 

  

−𝑝𝑑
′ = 𝑓′′ + 𝑓𝑓′ + 𝑀2𝑓′  (24) 

  

𝜃′′ + 𝑃𝑟𝑓𝜃′ − 𝑃𝑟𝑓′𝜃 + 𝑃𝑟𝑄𝜃 = 0  (25) 

  

𝜙′′ + 𝑆𝑐𝑓𝜙′ − 𝑆𝑐𝑓′𝜙 − 𝑆𝑐𝜆𝜙 = 0  (26) 

 

 The corresponding initial and boundary conditions take the form:  

𝑓 = 𝑓𝑤, 𝑓′ = 0, 𝑝𝑑 = 0, 𝜃 = 1, 𝜙 = 1   𝑎𝑡   𝜂 = 0

𝑓′ = 0, 𝜃 = 0, 𝜙 = 0   𝑎𝑡   𝜂 → ∞
 (27) 

 Integrating equation (24) with the initial and boundary conditions when 𝑓𝑤 = 1, let pressure 

drop −𝑝𝑑 = 𝐺, this becomes  
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𝐺 = 𝑓′ +
1

2
𝑓2 − (

1

2
+ 𝑀2) + 𝑀2𝑓  (28) 

 

 3 Weighted Residual Method 

The idea of a weighted residual method [23-26] is to seek an approximate solution, in form of a 

polynomial to the differential equation of the form  

𝐿[𝑢(𝑥)] = 𝑓  𝑖𝑛  𝑡ℎ𝑒  𝑑𝑜𝑚𝑎𝑖𝑛  𝑇,    𝐵𝜇[𝑢] = 𝛾𝜇  𝑜𝑛  𝜕𝑇 (29) 

 where 𝐿[𝑢] denotes a differential operator linear or non-linear involving spatial derivatives of 

dependent variables 𝑢, 𝑓 is known to function of position, 𝐵𝜇[𝑢] represents the approximate 

number of boundary conditions and 𝑇 is the domain with boundary 𝜕𝑇. 

Applying WRM to equations (23)-(28). We assume a polynomial with unknown 

coefficients or parameters to be determined later, this polynomial is called the trial function.  

𝑓(𝜂) = ∑𝑛
𝑖=0 𝑎𝑖𝜂𝑖 ,      𝜃(𝜂) = ∑𝑛

𝑖=0 𝑏𝑖𝜂𝑖,      𝜙(𝜂) = ∑𝑛
𝑖=0 𝑐𝑖𝜂𝑖 (30) 

 Impose the boundary conditions on the trial functions also substituting the trial functions into 

equations (23), (25), and (26) to obtain the residuals  

 

𝑓𝑟 = 6𝑎3 + 24𝑎4𝜂 + 60𝑎5𝜂2 + 120𝑎6𝜂3 + 210𝑎7𝜂4 + 336𝑎8𝜂5 + 504𝑎9𝜂6 + 720𝑎10𝜂7

+990𝑎11𝜂8 + 1320𝑎12𝜂9 + (𝑎12𝜂12 + 𝑎11𝜂11 + 𝑎10𝜂10 + 𝑎9𝜂9 + 𝑎8𝜂8 + 𝑎7𝜂7

+𝑎6𝜂6 + 𝑎5𝜂5 + 𝑎4𝜂4 + 𝑎3𝜂3 + 𝑎2𝜂2 + 𝑎1𝜂 + 𝑎0)(132𝑎12𝜂10 + 110𝑎11𝜂9

+90𝑎10𝜂8 + 72𝑎9𝜂7 + 56𝑎8𝜂6 + 42𝑎7𝜂5 + 30𝑎6𝜂4 + 20𝑎5𝜂3 + 12𝑎4𝜂2 + 6𝑎3𝜂 + 2𝑎2)

−(12𝑎12𝜂11 + 11𝑎11𝜂10 + 10𝑎10𝜂9 + 9𝑎9𝜂8 + 8𝑎8𝜂7 + 7𝑎7𝜂6 + 6𝑎6𝜂5 + 5𝑎5𝜂4

+4𝑎4𝜂3 + 3𝑎3𝜂2 + 2𝑎2𝜂 + 𝑎1)2 − −𝐻𝑎
2𝑠𝑖𝑛2𝛼(12𝑎12𝜂11 + 11𝑎11𝜂10 + 10𝑎10𝜂9 + 9𝑎9𝜂8

+8𝑎8𝜂7 + 7𝑎7𝜂6 + 6𝑎6𝜂5 + 5𝑎5𝜂4 + 4𝑎4𝜂3 + 3𝑎3𝜂2 + 2𝑎2𝜂 + 𝑎1) + 𝐺𝑟(𝑏12𝜂12

+𝑏11𝜂11 + 𝑏10𝜂10 + 𝑏9𝜂9 + 𝑏8𝜂8 + 𝑏7𝜂7 + 𝑏6𝜂6 + 𝑏5𝜂5 + 𝑏4𝜂4 + 𝑏3𝜂3 + 𝑏2𝜂2

+𝑏1𝜂 + 𝑏0) + 𝐺𝑐(𝑐12𝜂12 + 𝑐11𝜂11 + 𝑐10𝜂10 + 𝑐9𝜂9 + 𝑐8𝜂8 + 𝑐7𝜂7 + 𝑐6𝜂6 + 𝑐5𝜂5

  (31) 

 

𝜃𝑟 = 2𝑏2 + 6𝑏3𝜂 + 12𝑏4𝜂2 + 20𝑏5𝜂3 + 30𝑏6𝜂4 + 42𝑏7𝜂5 + 56𝑏8𝜂6 + 72𝑏9𝜂7 + 90𝑏10

𝜂8 + 110𝑏11𝜂9 + 132𝑏12𝜂10 + 𝑃𝑟(𝑎12𝜂12 + 𝑎11𝜂11 + 𝑎10𝜂10 + 𝑎9𝜂9 + 𝑎8𝜂8 + 𝑎7𝜂7

+𝑎6𝜂6 + 𝑎5𝜂5 + 𝑎4𝜂4 + 𝑎3𝜂3 + 𝑎2𝜂2 + 𝑎1𝜂 + 𝑎0)(12𝑏12𝜂11 + 11𝑏11𝜂10 + 10𝑏10𝜂9

+9𝑏9𝜂8 + 8𝑏8𝜂7 + 7𝑏7𝜂6 + 6𝑏6𝜂5 + 5𝑏5𝜂4 + 4𝑏4𝜂3 + 3𝑏3𝜂2 + 2𝑏2𝜂 + 𝑏1)

−𝑃𝑟(12𝑎12𝜂11 + 11𝑎11𝜂10 + 10𝑎10𝜂9 + 9𝑎9𝜂8 + 8𝑎8𝜂7 + 7𝑎7𝜂6 + 6𝑎6𝜂5 + 5𝑎5𝜂4

+4𝑎4𝜂3 + 3𝑎3𝜂2 + 2𝑎2𝜂 + 𝑎1)(𝑏12𝜂12 + 𝑏11𝜂11 + 𝑏10𝜂10 + 𝑏9𝜂9 + 𝑏8𝜂8

+𝑏7𝜂7 + 𝑏6𝜂6 + 𝑏5𝜂5 + 𝑏4𝜂4 + 𝑏3𝜂3 + 𝑏2𝜂2 + 𝑏1𝜂 + 𝑏0) + 𝑃𝑟𝑄(𝑏12𝜂12 + 𝑏11𝜂11

+𝑏10𝜂10 + 𝑏9𝜂9 + 𝑏8𝜂8 + 𝑏7𝜂7 + 𝑏6𝜂6 + 𝑏5𝜂5 + 𝑏4𝜂4 + 𝑏3𝜂3 + 𝑏2𝜂2

+𝑏1𝜂 + 𝑏0)

  

    (32) 
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𝜙𝑟 = 2𝑐2 + 6𝑐3𝜂 + 12𝑐4𝜂2 + 20𝑐5𝜂3 + 30𝑐6𝜂4 + 42𝑐7𝜂5 + 56𝑐8𝜂6 + 72𝑐9𝜂7 + 90𝑐10𝜂8

+110𝑐11𝜂9 + 132𝑐12𝜂10 + 𝑆𝑐(𝑎12𝜂12 + 𝑎11𝜂11 + 𝑎10𝜂10 + 𝑎9𝜂9 + 𝑎8𝜂8 + 𝑎7𝜂7

+𝑎6𝜂6 + 𝑎5𝜂5 + 𝑎4𝜂4 + 𝑎3𝜂3 + 𝑎2𝜂2 + 𝑎1𝜂 + 𝑎0)(12𝑐12𝜂11 + 11𝑐11𝜂10 + 10𝑐10𝜂9

+9𝑐9𝜂8 + 8𝑐8𝜂7 + 7𝑐7𝜂6 + 6𝑐6𝜂5 + 5𝑐5𝜂4 + 4𝑐4𝜂3 + 3𝑐3𝜂2 + 2𝑐2𝜂 + 𝑐1)

−𝑆𝑐(12𝑎12𝜂11 + 11𝑎11𝜂10 + 10𝑎10𝜂9 + 9𝑎9𝜂8 + 8𝑎8𝜂7 + 7𝑎7𝜂6 + 6𝑎6𝜂5 + 5𝑎5𝜂4

+4𝑎4𝜂3 + 3𝑎3𝜂2 + 2𝑎2𝜂 + 𝑎1)(𝑐12𝜂12 + 𝑐11𝜂11 + 𝑐10𝜂10 + 𝑐9𝜂9 + 𝑐8𝜂8 + 𝑐7𝜂7 + 𝑐6𝜂6

+𝑐5𝜂5 + 𝑐4𝜂4 + 𝑐3𝜂3 + 𝑐2𝜂2 + 𝑐1𝜂 + 𝑐0) − 𝑆𝑐𝜆(𝑐12𝜂12𝑐11𝜂11 + 𝑐10𝜂10

+𝑐9𝜂9 + 𝑐8𝜂8 + 𝑐7𝜂7 + 𝑐6𝜂6 + 𝑐5𝜂5 + 𝑐4𝜂4 + 𝑐3𝜂3 + 𝑐2𝜂2 + 𝑐1𝜂 + 𝑐0)
  (33) 

Minimizing the residual error to zero at some set of collocation points within the domain to 

obtain the unknown coefficients. Substituting the obtained constant values into the trial functions 

to get the tangential velocity, temperature, and concentration equations respectively.  

 

𝑓(𝜂) = 1.000000000 + 2.099284246𝜂2 − 3.047632751𝜂3 + 2.530136157𝜂4

−1.470259657𝜂5 + 0.6293250241𝜂6 − 0.1991658321𝜂7 + 0.0454804339𝜂8

−0.0070852237𝜂9 + 0.00067064439𝜂10 − 0.00002841484𝜂11

−0.000000010279𝜂12

 (34) 

 

𝜃(𝜂) = 1.000000000 − 0.7501015305𝜂 − 0.08820358330𝜂2 + 0.6074318152𝜂3

−0.7261180797𝜂4 + 0.5709303379𝜂5 − 0.3295917512𝜂6 + 0.1429428400𝜂7

−0.04630653096𝜂8 + 0.01089292777𝜂9 − 0.001757153433𝜂10

+0.0001735751976𝜂11 − 0.000007901449859𝜂12

 (35) 

 

𝜙(𝜂) = 1.000000000 − 1.420604887𝜂 + 0.7550189757𝜂2 + 0.1114517669𝜂3

−0.5521183085𝜂4 + 0.5564172609𝜂5 − 0.3637757365𝜂6 + 0.1733374400𝜂7

−0.06091843489𝜂8 + 0.01538962724𝜂9 − 0.002639573886𝜂10

+0.0002746098028𝜂11 − 0.00001305341620𝜂12

 (36) 

 

Differentiate equation (34) to obtain  

 

𝑓′(𝜂) = 4.198568492𝜂 − 9.142898253𝜂2 + 10.12054463𝜂3 − 7.351298285𝜂4

+3.775950145𝜂5 − 1.394160825𝜂6 + 0.3638434712𝜂7 − 0.0637670133𝜂8

+0.00670644390𝜂9 − 0.00031256324𝜂10 − 0.00000123348𝜂11

 (37) 

 

Also substituting for 𝑓 and 𝑓′ in (3.35) with the corresponding constant values to obtain the 

pressure drop as,  
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𝐺(𝜂) = −0.5000000000 − 5.919583592𝜂 − 9.24848031𝜂2 + 5.897473791𝜂3

−0.7398864645𝜂4 − 1.701380258𝜂5 + 1.567161938𝜂6 − 0.7405884216𝜂7

−0.2197160842𝜂8 − 0.04091577803𝜂9 + 0.004261080147𝜂10

−0.0001553604408𝜂11 + 1/2(1.000000000 + 2.9579917960𝜂2

−3.329319907𝜂3 + 1.682450942𝜂4 − 0.23209984000𝜂5

−0.2738925496𝜂6 + 0.2336621536𝜂7 + 0.09987549500𝜂8

+0.02718721756𝜂9 − 0.004771258242𝜂10 + 0.0004958086097𝜂11

−0.00002327604943𝜂12)2

 (38) 

 

Skin Friction 

 

𝜏 =
𝜕2𝑓

𝜕𝜂2 = 4.198568492 − 18.28579651𝜂 + 30.36163388𝜂2 − 29.40519314𝜂3 +

18.87975072𝜂4 − 8.364964948𝜂5 + 2.546904301𝜂6 − 0.5101361065𝜂7 +

0.06035799510𝜂8 − 0.003125631885𝜂9 − 0.00001356775269𝜂10

(39) 

 

 

 

 

 

Nusselt Number 

𝑁𝑢 = −
𝜕𝜃

𝜕𝜂
= 4.198568492𝜂 − 9.142898253𝜂2 + 10.12054463𝜂3 − 7.351298285𝜂4 +

3.775950145𝜂5 − 1.394160825𝜂6 + 0.3638434716𝜂7 − 0.06376701332𝜂8 +

0.006706443900𝜂9 − 0.0003125631885𝜂10 − 0.000001233432062𝜂11

  (40) 

Sherwood Number 

𝑆ℎ = −
𝜕𝜙

𝜕𝜂
= 4.198568492𝜂 − 9.142898253𝜂2 + 10.12054463𝜂3 − 7.351298285𝜂4 +

3.775950145𝜂5 − 1.394160825𝜂6 + 0.3638434716𝜂7 − 0.06376701332𝜂8 +

0.006706443900𝜂9 − 0.0003125631885𝜂10 − 0.000001233432062𝜂11

  (41) 

The process of the weighted residual method is repeated for different values of 𝐺𝑟, 𝐺𝑐, 𝐻𝑎, 𝛼, 

𝑄, 𝑃𝑟, 𝑆𝑐 and 𝜆. The following computational results in the table are obtained and compared 

with the shooting technique along with the fourth-order Runge-Kutta method.  

 

Table 1: Comparison of 𝜏, 𝑁𝑢, and 𝑆ℎ for various values of 𝐺𝑟, 𝐺𝑐, 𝑄 and 𝑆𝑐 (PP-Physical 

Parameters) 

    Weighted Residual method   4𝑡ℎ order R-K 

𝑃𝑃   values   𝜏   𝑁𝑢   𝑆ℎ   𝜏   𝑁𝑢   𝑆ℎ 

𝐺𝑟   2.5   2.86521   0.53944   1.34943   2.86359   0.53931   1.34902 

  5.5   3.77012   0.69197   1.39921   3.76616   0.69173   1.39866 

  7   4.19857   0.75010   1.42060   4.19315   0.74981   1.41999 

𝐺𝑐   4.5   3.59067   0.68694   1.39516   3.58741   0.68673   1.39467 

  5.5   3.83489   0.71293   1.40549   3.83083   0.71269   1.40495 

  7   4.19857   0.75010   1.42060   4.19315   0.74981   1.41998 
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𝑄   0.3   4.02001   1.08149   1.40258   4.01476   1.08098   1.40195 

  1.0   4.19857   0.75010   1.42060   4.19315   0.74981   1.41998 

  2.0   4.63757   0.01876   1.46429   4.63208   0.01877   1.46368 

𝑆𝑐   0.01   4.79802   0.93631   0.35822   4.79293   0.93598   0.35822 

  0.1   4.65693   0.89254   0.56181   4.65179   0.89221   0.56179 

  0.62   4.19857   0.75010   1.42061   4.193156   0.74981   1.41999 

 

4  Results and Discussion 

The numerical computation has been carried out using the Weighted Residual method for 

variations in the governing parameters, the Hartmann number 𝐻𝑎 , angle of inclination 𝛼 , 

thermal Grashof number 𝐺𝑟 , heat source 𝑄, Prandtl number 𝑃𝑟 , solutal Grashof number 𝐺𝑐 , 

Schmidt number 𝑆𝑐 and reaction rate parameter 𝜆. The following default parameter values are 

adopted for computation: 𝐺𝑟=𝐺𝑐=7, 𝑄=𝜆=1, 𝑃𝑟=0.72, 𝑆𝑐=0.62, 𝐻𝑎=5 and 𝛼 = 300. All graphs, 

therefore, match these values unless in particular indicated on the appropriate graph. Table 1 

shows the effect of some parameters on skin friction, Nusselt, and Sherwood number. It clearly 

shows that an increase in the solutant and thermal Grashof number has an accelerating effect on 

the skin friction, Nusselt, and Sherwood number respectively. An increase in heat source 

increases skin friction and Sherwood number while it retards the Nusselt number because heat 

within the boundary layer reduces. Also, skin friction and Nusselt number decreases as the 

Schmidt number increases but have an increasing effect on the Sherwood number. 

Figures 2 and 3 represent the velocity and pressure profiles for different values of Hartmann 

number 𝐻𝑎. It is found that a rise in the magnetic field parameter 𝐻𝑎 decreases the velocity and 

pressure profiles. This is because the magnetic field exerts a retarding force on the convective 

fluid flow. A Lorentz force is induced as the magnetic term increases all over the flow regime 

that opposes the flow field. As magnetic values rise, the impact of Lorentz force is encouraged 

that in turn decreases heat source terms thereby causes the fluid to decline. Figures 4 and 5 show 

the velocity and pressure profiles for various angles of inclination of the magnetic field 𝛼, while 

other parameters are kept fixed at some values. An increase in the angle of inclination is noticed 

to diminish the effect of the buoyancy force and thereby the driving force of the fluid flow 

decreases. As a result, the velocity and pressure distributions decrease, as such pressure and flow 

rate are discouraged. The influence of different values of the thermal Grashof number 𝐺𝑟 on the 

velocity and pressure profiles are presented in figures 6 and 7. It is observed that an increase in 

the values of the relative effect of the thermal buoyancy force on the viscous hydrodynamic force 

in the boundary layer causes an increase in the velocity and pressure distributions. The effect of 

variations in the ratio of the species buoyancy force to the hydrodynamic force in the boundary 

layer on the velocity and pressure distributions are illustrated in figures 8 and 9. The numerical 

results show the effect of increasing values of solutal Grashof number 𝐺𝑐 causes an increase in 

the velocity and pressure distributions. This is due to rising in the heat source terms that 

decreases the fluid bonding force, this, therefore, enhances the sensitivity of the flow 

characteristics. The velocity distribution attains a maximum value and then decreases gradually 

towards the free stream.  

Figures 10, 11, and 12 show the effect of different values of the Prandtl number 𝑃𝑟  on the 

velocity, pressure, and temperature profiles. It is found that variations in the ratio of momentum 

diffusivity to thermal diffusivity result in a respectively decrease in velocity and pressure 

distributions. The figures show an increase in the values of 𝑃𝑟  results in a decrease of the 

momentum, thermal, and mass boundary layers thickness and reduce the average temperature 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 11, Issue 12, December-2020                                 1284 

ISSN 2229-5518  
 

IJSER © 2020 

http://www.ijser.org 

within the boundary layers. Smaller values of 𝑃𝑟 equivalents to an increasing in the thermal 

conductivity and heat is will diffuse out from the heated plate than higher values of 𝑃𝑟. Figures 

13, 14, and 15 depict the effect of Schmidt number 𝑆𝑐  on the velocity, pressure, and 

concentration profiles. Schmidt number is the ratio of the momentum to the mass diffusivity. An 

increase in 𝑆𝑐  slow down the velocity, pressure, and concentration profiles which are 

accompanied by a simultaneous decrease in the velocity, pressure, and concentration boundary 

layers. Schmidt number quantifies the relative effectiveness of momentum and mass transfer 

through diffusion in the hydrodynamic velocity, pressure, and concentration boundary layers. 

Figures 16, 17, and 18 represent the effects of the heat source parameter on the velocity, 

pressure, and temperature profiles. it is noticed that velocity, pressure, and temperature increase 

rapidly as the heat source parameter Q increases. The figures indicate that increasing heat source 

parameter Q, increases the momentum and thermal boundary layers thickness that in turn 

increases the shear stress and reduces the heat transfer coefficient at the surface respectively. 

Figures 19, 20, and 21 present the effects of reaction rate parameter 𝜆 on the velocity, pressure, 

and concentration distributions. An increase in the values of 𝜆 , decreases the velocity and 

pressure profiles (figures 19 and 20). From Figure 21, it is very clear that the reactive solutal 

profiles decrease with an increase in the values of 𝜆, that is the reaction rate parameter is a 

decreasing agent and as a result, the solute boundary layer close to the wall becomes thinner. 

This is due to the fact the conversion of the species takes place near the wall as a result of the 

chemical reaction and then decrease the concentration in the boundary layer. All these agree with 

the expectations.  

 

                 
Figure 2: Velocity field for various Ha             Figure 3: Pressure distribution for diverse Ha 
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Figure 4: Flow rate at different angle                 Figure 5: Pressure profile at a diverse angle  

 

                 
Figure 6: Effect of Gr on the flow rate                  Figure 7: Influence of Gr on the pressure 

                
Figure 8: Velocity profile for various Gc    Figure 9: Gc impact on the pressure field 
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Figure 10: Flow velocity field for diverse Pr  Figure 11: Pressure distribution for rising Pr 
 

             
Figure 12: Temperature field for various Pr         Figure 13: Flow rate field for different Sc  

             
Figure 14: Pressure profile for rising Sc    Figure 15: Mass distribution for rising Sc  
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Figure 16: Impact of rising Q on the flow rate  Figure 17: Effect of Q on the pressure field 
 

             
Figure 18: Temperature distribution for Q     Figure 19: Influence of 𝜆 on the velocity field 

             
Figure 20: Changes in pressure for rising 𝜆  Figure 21: Concentration field for diverse 𝜆 
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Conclusion 

The partial differential equations of the fluid flow problem are non-dimensional and reduced to a 

couple of ordinary differential equations using scaling translational symmetries. The numerical 

solution for scaling symmetry is obtained using the Weighted Residual Method. From the 

numerical results, it is observed that an increase in the magnetic field parameter Hartmann or 

degree of inclination of the magnetic field is manifested as a decrease in the flow velocity and 

pressure profiles. The velocity and pressure distributions accelerate as the thermal Grashof or 

solutal Grashof numbers increases. In the presence of increasing Prandtl or Schmidt numbers, 

there is a corresponding decrease in velocity, pressure-temperature, or concentration profile. The 

velocity, pressure, and temperature distributions are seen to increase gradually as the heat source 

increases. Increasing the chemical reaction rate reduces the velocity, pressure, and concentration 

distributions.  
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